Traveling wave solutions for integro-difference systems
نویسندگان
چکیده
منابع مشابه
Some traveling wave solutions of soliton family
Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...
متن کاملSpreading Speeds and Traveling Waves for Non-cooperative Integro-difference Systems.
The study of spatially explicit integro-difference systems when the local population dynamics are given in terms of discrete-time generations models has gained considerable attention over the past two decades. These nonlinear systems arise naturally in the study of the spatial dispersal of organisms. The brunt of the mathematical research on these systems, particularly, when dealing with cooper...
متن کاملsome traveling wave solutions of soliton family
solitons are ubiquitous and exist in almost every area from sky to bottom. for solitons to appear, the relevant equation of motion must be nonlinear. in the present study, we deal with the korteweg-devries (kdv), modied korteweg-de vries (mkdv) and regularised longwave (rlw) equations using homotopy perturbation method (hpm). the algorithm makes use of the hpm to determine the initial expansio...
متن کاملExistence of Traveling-wave Solutions to Boussinesq Systems
In this manuscript, the existence of traveling-wave solutions to Boussinesq systems ηt + ux + (ηu)x + auxxx − bηxxt = 0, ut + ηx + uux + cηxxx − duxxt = 0, is established. We prove that all the systems with a < 0, c < 0 and b = d exhibit traveling-wave solutions with small propagation speeds. The result complements our earlier work [6] on a restricted family of the systems where both existenc...
متن کاملTraveling Wave Solutions for Bistable Differential-Difference Equations with Periodic Diffusion
We consider traveling wave solutions to spatially discrete reaction-diffusion equations with nonlocal variable diffusion and bistable nonlinearities. To find the traveling wave solutions we introduce an ansatz in which the wave speed depends on the underlying lattice as well as on time. For the case of spatially periodic diffusion we obtain analytic solutions for the traveling wave problem usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2015
ISSN: 0022-0396
DOI: 10.1016/j.jde.2014.12.030